2022 Annual Drinking Water Quality Report Site: Quail Lake System; Utah System #27094 Sand Hollow Wells; Utah System #27073 Source: Surface water (Quail Creek WTP) & ground water (Sand Hollow Wells) Serves: Regional Pipeline, Sand Hollow Regional Pipeline (St. George, Washington, Ivins, Santa Clara, and Hurricane) #### Executive summary: The Quail Lake System meets or surpasses all federal and state health and safety requirements. Washington County Water Conservancy District (WCWCD) will continue monitoring the quality, treatment and sustainability of all its water sources to preserve and protect our current and future supply. #### About this report: The Environmental Protection Agency (EPA) requires the monitoring of more than 80 contaminants. The contaminants listed on the following chart were discovered in this water source. All sources of drinking water are subject to potential contamination by constituents that are naturally occurring or man-made. Those constituents can be microbes, organic or inorganic chemicals, or radioactive materials. All drinking water, including bottled water, may reasonably be expected to contain at least small amounts of some contaminants. The presence of contaminants does not necessarily indicate that water poses a health risk. More information about contaminants and potential health effects can be obtained by calling the EPA's Safe Drinking Water Hotline (1.800.426.4791). Some people may be more vulnerable to contaminants in drinking water than the general population. Immuno-compromised persons, such as persons with cancer undergoing chemotherapy, persons who have undergone organ transplants, persons with HIV/AIDS or other immune system disorders, some elderly and infants can be particularly at risk from infections. These people should seek advice about drinking water from their health care providers. EPA/CDC guidelines on appropriate means to lessen the risk of infection by cryptosporidium and other microbiological contaminants are available from the Safe Drinking Water Hotline. Some water sources in this system have arsenic concentrations in excess of EPA's standard; however, under an arsenic blending plan, approved by the Utah Division of Drinking Water, these sources are being blended with sources which have lower arsenic concentrations to ensure the water reaching our customers is not in violation of EPA's standard. While your drinking water meets EPA's standards for arsenic, it does contain low levels of arsenic. EPA's standard balances the current understanding of arsenic's possible health effects against the costs of removing arsenic from drinking water. EPA continues to research the health effects of low levels of arsenic, which is a mineral known to cause cancer in humans at high concentrations and is linked to other health effects such as skin damage and circulatory problems. If present, elevated levels of lead can cause serious health problems, especially for pregnant women and young children. Lead in drinking water is primarily from materials and components associated with service lines and home plumbing. The WCWCD is responsible for providing high quality drinking water but cannot control the variety of materials used in plumbing components. When your water has been sitting for several hours, you can minimize the potential for lead exposure by flushing your tap for 30 seconds to 2 minutes before using water for drinking or cooking. If you are concerned about lead in your water, you may wish to have your water tested. Information on lead in drinking water, testing methods, and steps you can take to minimize exposure is available from the Safe Drinking Water Hotline or at epa.gov/safewater/lead. ### Protecting your water source: Drinking water source protection plans for Virgin River, Quail Creek Reservoir, Sand Hollow Reservoir, and Sand Hollow Wells are available at the WCWCD office. The plans include information about source protection zones, potential contamination sources and management strategies to protect our drinking water. One common source of contamination is cross connections — any connection not properly protected by a backflow protection device that allows polluted water or chemicals to enter the water supply system. This can be as simple as a hose-end sprayer used to fertilize or apply pesticides. WCWCD encourages all water users to not make or allow improper connections due to its potential adverse effects on our water supply, the community and its residents. #### Additional information: Customers desiring to know more about their water utility can contact the WCWCD offices at 435.673.3617 or attend one of our regularly scheduled board meetings. Visit www.dc.org/about-us/management/board-of-trustees-meeting-schedule/ for the schedule. #### Reporting agency contact: Zachary Renstrom Washington County Water Conservancy District 533 E. Waterworks Drive St. George, UT 84770 435.673.3617 #### Water Quality Test Results Sand MCLG **Quail Creek** MCL Year(s) **Possible Sources of** Contaminant Unit Hollow (EPA Violation (EPA Limit) WTP Sampled Contamination Wells Goal) Erosion of natural 2022 Aluminum 0.2 ND 0.2 NE No ppm deposits 2020 & Erosion of natural Alpha Emitters pCi/L 1 15 0 No 2022 deposits RAA = 5Erosion of natural **RAA = 10** 0 2022 Arsenic ppb No Range = 3 - 10deposits Erosion of natural Barium 0.1 0.3 2 2 2022 No ppm deposits 2020 & Decay of natural and **Beta Emitters** pCi/L 4 5 50 0 No 2022 man-made deposits Erosion of natural ND NE ΝE 2022 Calcium ppm 65 No deposits Erosion of natural 4 4 2022 Fluoride ppm 0.2 0.4 No deposits Erosion of natural NE NE 2022 Magnesium ppm 38 NA No deposits Erosion of natural ND 0.0034 0.05 NE 2022 Manganese ppm No deposits Runoff from fertilizer use; Nitrate leaching from septic 10 2022 ppm ND 3 10 No (as Nitrogen) tanks, sewage; erosion of natural deposits 2020 & Erosion of natural 5 Radium 226 pCi/L NΑ 1 0 No 2022 deposits 2020 & Erosion of natural 5 0 Radium 228 pCi/L 0.6 3.5 No 2022 deposits Erosion of natural Selenium ppb 1 6 50 50 2022 No deposits Erosion of natural Sodium ppm 56 3 NE NE 2022 NA deposits Erosion of natural Sulfate 222 273 500* ΝE 2022 No ppm deposits **Total Dissolved** Erosion of natural 1,000* TT TT NE NE NE 2022 2022 2022 No No No deposits Naturally present in the environment Naturally present in the environment 516 2.1 0.12 ppm ppm NTU Solids **Total Organic** Carbon Turbidity 480 NA 0.22 ^{*}Although the EPA has not established an MCL for sulfate and total dissolved solids, the Utah Division of Water Quality requires a sulfate concentration of less than 500 ppm and a total dissolved solids concentration less than 1,000 ppm unless the water system has no other water sources available. ## Glossary Maximum Contaminant Level (MCL) – Highest level of a contaminant that is allowed in drinking water. MCLs are set as close to the MCLGs as feasible using the best available treatment technology. **Maximum Contaminant Level Goal (MCLG)** – Level of a contaminant in drinking water below which there is no known or expected risk to health. MCLGs allow for a margin of safety. **Nephelometric Turbidity Unit (NTU)** – Nephelometric turbidity unit is a measure of the clarity of water. Turbidity in excess of 5 NTU is just noticeable to the average person. **None Established (NE)** – MCL or MCLG has not been established for particular contaminant. **Non-detect (ND)** – Not detected above reporting limits of laboratory analysis. **Not Applicable (NA)** – Violation is not applicable because the EPA has not established an MCL for particular contaminant or does not require sampling at particular source. **Parts per million (ppm)** – One part per million is a unit that represents 1 part contaminant in 1,000,000 parts water. In water applications, one part per million is also equivalent to 1 milligram per liter (mg/L). **Parts per billion (ppb)** – One part per billion is a unit that represents 1 part contaminant in 1,000,000,000 parts water. In water applications, one part per billion is also equivalent to 1 microgram per liter (ug/L). **Picocuries per Liter (pCi/L)** – Picocuries per liter is a measure of the radioactivity in water. **Range** – Range of highest and lowest laboratory results. **Running Annual Average (RAA)** – Highest running annual average of four consecutive quarters when sampling occurs quarterly. **Treatment Technique (TT)** – EPA requires process intended to reduce the level of a contaminant in drinking water. **Year Sampled** – WCWCD is allowed to monitor for some contaminants less than once per year because the concentrations of these contaminants do not change frequently. Some data, though representative, are more than one year old. Systems with more than one source may have multiple dates listed.